

FIGURE 24. EFFECT OF SUPPORT PRESSURE P3 ON BORE PRESSURE CAPABILITY FOR THE RING-FLUID-SEGMENT CONTAINER

> $\alpha_r = 0.5, \alpha_m = -0.5$ $k_1 = 1.5, k_2 = 2.0.$

The analysis of the pin-segment container, shown in Figure 7(d), also assumes a high-strength liner. It is also assumed that any manufactured interference is taken up during assembly by slack between pins and holes. Therefore, the residual pressure q_1 between liner and segments is zero at room temperature and nonzero at temperature only if the coefficient of thermal expansion of the liner, α_1 , is greater than that of the segments, α_2 . In this analysis, it is assumed that $\alpha_1 \ge \alpha_2$.

The following radial deformation equation must be satisfied:

$$u_1(r_1) + \alpha_1 \Delta Tr_1 = u_1(r_1) + \alpha_2 \Delta Tr_2$$
(67)

where

 $u_1(r_1) =$ the radial deformation of the liner at r_1 due to p at r_0 and p_1 at r_1 when $p \neq 0$, and due to q_1 at r_1 when p = 0

 $u_2(r_1)$ = the radial deformation of the segments at r_1 due to p_1 or q_1 at r_1 and the pin loading at r_2 .

Substituting into Equation (67), Equations (17a) and (26a) for u_1 and u_2 , and solving for p_1 , one gets

$$p_{1} = \frac{1}{g_{2}} \left[\frac{2p}{k_{1}^{2}-1} + E_{1} \Delta T (\alpha_{1} - k_{2} \alpha_{2}) \right]$$
(68)

where

$$g_{2} = \frac{E_{1}}{E_{2}} \left[\frac{k_{2}^{2} + 1}{k_{2}^{2} - 1} + \nu + \frac{M_{2}f_{3}(r_{1})}{\beta_{1}} + E_{2} \frac{G_{2}}{r_{1}} + g_{m4}(r_{1}) \right] + \frac{k_{1}^{2} + 1}{k_{1}^{2} - 1} - \nu \quad .$$
(69)

Similarly, q₁ is found if p is taken as zero; i.e.,

$$q_{1} = \frac{E_{1} \Delta T (\alpha_{1} - k_{2} \alpha_{2})}{g_{2}} \qquad (70)$$

Formulating the range in hoop stress $(\sigma_{\theta})_r$ at the bore (Equation (59) and using the definition $\alpha_r \sigma_1 = (\sigma_{\theta})_r$, we get the following expression for p/σ_1 :

$$\frac{p}{\sigma_1} = \frac{2\alpha_r (k_1^2 - 1)^2 g_2}{\left[g_2 (k_1^4 - 1) - 4k_1^2\right]}$$
(71)

[Equation (71) is identical in form to Equation (61).]